Skip to Content
IntegrationsCrewAIConfiguration

Configuration

This guide covers all configuration options for the EndeeVectorStore class.

Constructor Parameters

The EndeeVectorStore constructor accepts the following parameters:

ParameterTypeRequiredDescription
typestrYesName of the Endee index
api_tokenstrYes*Your Endee API token (required if endee_index not provided)
embedder_configdictYesConfiguration for the embedding provider
space_typestrNoDistance metric: "cosine", "l2", or "ip" (default: "cosine")
allow_resetboolNoWhether to allow resetting the index (default: True)
crewCrewNoOptional CrewAI object for integration
text_keystrNoKey to store text in metadata (default: "value")
endee_indexIndexNoOptional existing Endee index object

Distance Metrics

MetricBest For
cosineText embeddings, normalized vectors (default)
l2Image features, spatial data
ipRecommendation systems, dot product similarity

Embedder Configuration

The embedder_config parameter configures your embedding provider:

embedder_config = { "provider": "<provider_name>", "config": { "model_name": "<model_name>", "api_key": "<api_key>" } }

Supported Providers

OpenAI:

embedder_config = { "provider": "openai", "config": { "model_name": "text-embedding-3-small", "api_key": "<OPENAI_API_KEY>" } }

Google:

embedder_config = { "provider": "google", "config": { "model_name": "models/embedding-001", "api_key": "<GOOGLE_API_KEY>" } }

Cohere:

embedder_config = { "provider": "cohere", "config": { "model_name": "small", "api_key": "<COHERE_API_KEY>" } }

HuggingFace:

embedder_config = { "provider": "huggingface", "config": { "model_name": "sentence-transformers/all-MiniLM-L6-v2" } }

Full Configuration Example

from endee_crewai import EndeeVectorStore memory_store = EndeeVectorStore( type="my_knowledge_base", api_token="<ENDEE_API_TOKEN>", embedder_config={ "provider": "openai", "config": { "model_name": "text-embedding-3-small", "api_key": "<OPENAI_API_KEY>" } }, space_type="cosine", allow_reset=True, crew=None, text_key="value" )

Methods Reference

EndeeVectorStore Methods

MethodDescription
save(text, metadata)Save a document with metadata
search(query, limit, filter)Search for similar documents
reset()Delete and recreate the index

Save Method

memory_store.save( text="Document content here", metadata={"key": "value", "category": "example"} )

Search Method

results = memory_store.search( query="search query", limit=10, filter={"category": {"$eq": "example"}} )

Reset Method

# Reset the index (deletes all data) memory_store.reset() # Wait for reset to complete import time time.sleep(2)

Warning: The reset() method permanently deletes all data in the index. Use with caution.

Environment Variables

For production deployments, use environment variables instead of hardcoding API keys:

import os memory_store = EndeeVectorStore( type="production_index", api_token=os.environ["ENDEE_API_TOKEN"], embedder_config={ "provider": "openai", "config": { "model_name": "text-embedding-3-small", "api_key": os.environ["OPENAI_API_KEY"] } }, space_type="cosine" )