Configuration
This guide covers all configuration options for the EndeeVectorStore class.
Constructor Parameters
The EndeeVectorStore constructor accepts the following parameters:
| Parameter | Type | Required | Description |
|---|---|---|---|
type | str | Yes | Name of the Endee index |
api_token | str | Yes* | Your Endee API token (required if endee_index not provided) |
embedder_config | dict | Yes | Configuration for the embedding provider |
space_type | str | No | Distance metric: "cosine", "l2", or "ip" (default: "cosine") |
allow_reset | bool | No | Whether to allow resetting the index (default: True) |
crew | Crew | No | Optional CrewAI object for integration |
text_key | str | No | Key to store text in metadata (default: "value") |
endee_index | Index | No | Optional existing Endee index object |
Distance Metrics
| Metric | Best For |
|---|---|
cosine | Text embeddings, normalized vectors (default) |
l2 | Image features, spatial data |
ip | Recommendation systems, dot product similarity |
Embedder Configuration
The embedder_config parameter configures your embedding provider:
embedder_config = {
"provider": "<provider_name>",
"config": {
"model_name": "<model_name>",
"api_key": "<api_key>"
}
}Supported Providers
OpenAI:
embedder_config = {
"provider": "openai",
"config": {
"model_name": "text-embedding-3-small",
"api_key": "<OPENAI_API_KEY>"
}
}Google:
embedder_config = {
"provider": "google",
"config": {
"model_name": "models/embedding-001",
"api_key": "<GOOGLE_API_KEY>"
}
}Cohere:
embedder_config = {
"provider": "cohere",
"config": {
"model_name": "small",
"api_key": "<COHERE_API_KEY>"
}
}HuggingFace:
embedder_config = {
"provider": "huggingface",
"config": {
"model_name": "sentence-transformers/all-MiniLM-L6-v2"
}
}Full Configuration Example
from endee_crewai import EndeeVectorStore
memory_store = EndeeVectorStore(
type="my_knowledge_base",
api_token="<ENDEE_API_TOKEN>",
embedder_config={
"provider": "openai",
"config": {
"model_name": "text-embedding-3-small",
"api_key": "<OPENAI_API_KEY>"
}
},
space_type="cosine",
allow_reset=True,
crew=None,
text_key="value"
)Methods Reference
EndeeVectorStore Methods
| Method | Description |
|---|---|
save(text, metadata) | Save a document with metadata |
search(query, limit, filter) | Search for similar documents |
reset() | Delete and recreate the index |
Save Method
memory_store.save(
text="Document content here",
metadata={"key": "value", "category": "example"}
)Search Method
results = memory_store.search(
query="search query",
limit=10,
filter={"category": {"$eq": "example"}}
)Reset Method
# Reset the index (deletes all data)
memory_store.reset()
# Wait for reset to complete
import time
time.sleep(2)Warning: The
reset()method permanently deletes all data in the index. Use with caution.
Environment Variables
For production deployments, use environment variables instead of hardcoding API keys:
import os
memory_store = EndeeVectorStore(
type="production_index",
api_token=os.environ["ENDEE_API_TOKEN"],
embedder_config={
"provider": "openai",
"config": {
"model_name": "text-embedding-3-small",
"api_key": os.environ["OPENAI_API_KEY"]
}
},
space_type="cosine"
)