LlamaIndex Quickstart
Build powerful RAG applications with Endee vector database and LlamaIndex. This guide will walk you through installation, setup, and creating your first vector index.
Requirements
- Python 3.8 or higher
- An Endee account (sign up at Endee Dashboard )
- OpenAI API key (for embeddings)
Installation
Install the Endee LlamaIndex integration package:
pip install endee-llamaindexNote: This will automatically install
endeeandllama-indexas dependencies.
Setting up Credentials
Configure your API credentials for Endee and OpenAI:
import os
from llama_index.embeddings.openai import OpenAIEmbedding
# Set API keys
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
endee_api_token = "your-endee-api-token"Tip: Store your API keys in environment variables for production use.
Initialize Endee Vector Store
Set up the Endee vector store and connect it to LlamaIndex:
from endee_llamaindex import EndeeVectorStore
from llama_index.core import StorageContext
import time
# Create a unique index name
timestamp = int(time.time())
index_name = f"llamaindex_demo_{timestamp}"
# Set up the embedding model
embed_model = OpenAIEmbedding()
# Initialize the Endee vector store
vector_store = EndeeVectorStore.from_params(
api_token=endee_api_token,
index_name=index_name,
dimension=1536, # OpenAI's default embedding dimension
space_type="cosine" # Can be "cosine", "l2", or "ip"
)
# Create storage context with our vector store
storage_context = StorageContext.from_defaults(vector_store=vector_store)
print(f"Initialized Endee vector store with index: {index_name}")Configuration Options
| Parameter | Type | Description | Default |
|---|---|---|---|
api_token | str | Your Endee API token | Required |
index_name | str | Name of the index | Required |
dimension | int | Vector dimension | Required |
space_type | str | Distance metric | "cosine" |
batch_size | int | Vectors per API call | 100 |
Distance Metrics
| Metric | Best For |
|---|---|
cosine | Text embeddings, normalized vectors |
l2 | Image features, spatial data |
ip | Recommendation systems, dot product similarity |
Next Steps
Now that you have your vector store set up, learn how to: