Skip to Content
SDKsPython SDKQuickstart

Python SDK Quickstart

Get started with the Endee Python SDK to build powerful vector search applications. This guide will walk you through installation, setup, and creating your first index.

Requirements

Create a Project and Get Auth Token

Before using the SDK, you need to set up your project and generate an authentication token:

  1. Sign up or log in at Endee Dashboard 
  2. Create a new project from your dashboard
  3. Generate an auth token from the API Keys section in your project settings
  4. Save your token securely — you’ll need it to authenticate SDK requests

Keep your auth token private and never expose it in client-side code.

Installation

Install the Endee Python SDK using pip:

pip install endee

Setup Endee and Create Index

Initialize the Client

The Endee client is the main interface for all vector operations. Initialize it with your API token:

from endee.endee_client import Endee # Initialize with your API token client = Endee(token="your-token-here")

Create an Index

Create a new vector index with your desired configuration:

# Create an index with custom parameters client.create_index( name="my_vectors", dimension=1536, # Your vector dimension (must match your embedding model) space_type="cosine", # Distance metric: "cosine", "l2", or "ip" (inner product) M=16, # Graph connectivity parameter (default = 16) ef_con=128, # Construction-time parameter (default = 128) use_fp16=True # Use half-precision for storage optimization (default = True) )

Parameters:

ParameterDescription
nameUnique name for your index
dimensionVector dimensionality (must match your embedding model’s output)
space_typeDistance metric - "cosine", "l2", or "ip" (inner product)
MGraph connectivity - higher values increase recall but use more memory
ef_conConstruction-time parameter - higher values improve index quality but slow down indexing
use_fp16Enable half-precision storage for 50% memory savings with minimal accuracy loss

List and Access Indexes

# List all indexes in your workspace indexes = client.list_indexes() # Get reference to an existing index index = client.get_index(name="my_vectors")

Next Steps

Now that you have your index set up, learn how to: