Python SDK Quickstart
Get started with the Endee Python SDK to build powerful vector search applications. This guide will walk you through installation, setup, and creating your first index.
Requirements
- Python 3.8 or higher
- An Endee account (sign up at Endee Dashboard )
Create a Project and Get Auth Token
Before using the SDK, you need to set up your project and generate an authentication token:
- Sign up or log in at Endee Dashboard
- Create a new project from your dashboard
- Generate an auth token from the API Keys section in your project settings
- Save your token securely — you’ll need it to authenticate SDK requests
Keep your auth token private and never expose it in client-side code.
Installation
Install the Endee Python SDK using pip:
pip install endeeSetup Endee and Create Index
Initialize the Client
The Endee client is the main interface for all vector operations. Initialize it with your API token:
from endee.endee_client import Endee
# Initialize with your API token
client = Endee(token="your-token-here")Create an Index
Create a new vector index with your desired configuration:
# Create an index with custom parameters
client.create_index(
name="my_vectors",
dimension=1536, # Your vector dimension (must match your embedding model)
space_type="cosine", # Distance metric: "cosine", "l2", or "ip" (inner product)
M=16, # Graph connectivity parameter (default = 16)
ef_con=128, # Construction-time parameter (default = 128)
use_fp16=True # Use half-precision for storage optimization (default = True)
)Parameters:
| Parameter | Description |
|---|---|
name | Unique name for your index |
dimension | Vector dimensionality (must match your embedding model’s output) |
space_type | Distance metric - "cosine", "l2", or "ip" (inner product) |
M | Graph connectivity - higher values increase recall but use more memory |
ef_con | Construction-time parameter - higher values improve index quality but slow down indexing |
use_fp16 | Enable half-precision storage for 50% memory savings with minimal accuracy loss |
List and Access Indexes
# List all indexes in your workspace
indexes = client.list_indexes()
# Get reference to an existing index
index = client.get_index(name="my_vectors")Next Steps
Now that you have your index set up, learn how to: