LangChain Quickstart
Build secure vector search and retrieval applications with Endee and LangChain. This guide walks you through installation, setup, and creating your first vector store.
Requirements
- Python 3.8 or higher
- An Endee account (sign up at Endee Dashboard )
- OpenAI API key (for embeddings)
Installation
Install the required packages:
pip install endee-langchain langchain langchain_openaiSetting up Credentials
Configure your API credentials for Endee and OpenAI:
import os
from langchain_openai import OpenAIEmbeddings
from endee.endee_client import Endee
# Set API keys
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
endee_api_token = "your-endee-api-token"
# Initialize Endee client
nd = Endee(token=endee_api_token)Tip: Store your API keys in environment variables for production use.
Initialize the Embedding Model
Set up OpenAI embeddings for your vector store:
# Initialize the embedding model
embedding_model = OpenAIEmbeddings()
# Get the embedding dimension (OpenAI's text-embedding-ada-002 uses 1536 dimensions)
dimension = 1536Initialize Endee Vector Store
Set up the Endee vector store integration with LangChain:
from endee_langchain import EndeeVectorStore
import time
# Create a unique index name with timestamp to avoid conflicts
timestamp = int(time.time())
index_name = f"langchain_demo_{timestamp}"
# Initialize the Endee vector store
vector_store = EndeeVectorStore.from_params(
embedding=embedding_model,
api_token=endee_api_token,
index_name=index_name,
dimension=dimension,
space_type="cosine" # Can be "cosine", "l2", or "ip"
)
print(f"Initialized Endee vector store with index: {index_name}")Configuration Options
| Parameter | Type | Description | Default |
|---|---|---|---|
embedding | Embeddings | LangChain embedding model | Required |
api_token | str | Your Endee API token | Required |
index_name | str | Name of the index | Required |
dimension | int | Vector dimension | Required |
space_type | str | Distance metric | "cosine" |
Distance Metrics
| Metric | Best For |
|---|---|
cosine | Text embeddings, normalized vectors |
l2 | Image features, spatial data |
ip | Recommendation systems, dot product similarity |
Next Steps
Now that you have your vector store set up, learn how to: