Skip to Content
IntegrationsLangChainQuickstart

LangChain Quickstart

Build secure vector search and retrieval applications with Endee and LangChain. This guide walks you through installation, setup, and creating your first vector store.

Requirements

  • Python 3.8 or higher
  • An Endee account (sign up at Endee Dashboard )
  • OpenAI API key (for embeddings)

Installation

Install the required packages:

pip install endee-langchain langchain langchain_openai

Setting up Credentials

Configure your API credentials for Endee and OpenAI:

import os from langchain_openai import OpenAIEmbeddings from endee.endee_client import Endee # Set API keys os.environ["OPENAI_API_KEY"] = "your-openai-api-key" endee_api_token = "your-endee-api-token" # Initialize Endee client nd = Endee(token=endee_api_token)

Tip: Store your API keys in environment variables for production use.

Initialize the Embedding Model

Set up OpenAI embeddings for your vector store:

# Initialize the embedding model embedding_model = OpenAIEmbeddings() # Get the embedding dimension (OpenAI's text-embedding-ada-002 uses 1536 dimensions) dimension = 1536

Initialize Endee Vector Store

Set up the Endee vector store integration with LangChain:

from endee_langchain import EndeeVectorStore import time # Create a unique index name with timestamp to avoid conflicts timestamp = int(time.time()) index_name = f"langchain_demo_{timestamp}" # Initialize the Endee vector store vector_store = EndeeVectorStore.from_params( embedding=embedding_model, api_token=endee_api_token, index_name=index_name, dimension=dimension, space_type="cosine" # Can be "cosine", "l2", or "ip" ) print(f"Initialized Endee vector store with index: {index_name}")

Configuration Options

ParameterTypeDescriptionDefault
embeddingEmbeddingsLangChain embedding modelRequired
api_tokenstrYour Endee API tokenRequired
index_namestrName of the indexRequired
dimensionintVector dimensionRequired
space_typestrDistance metric"cosine"

Distance Metrics

MetricBest For
cosineText embeddings, normalized vectors
l2Image features, spatial data
ipRecommendation systems, dot product similarity

Next Steps

Now that you have your vector store set up, learn how to: