CrewAI Quickstart
Build AI agent systems with persistent vector memory using Endee and CrewAI. This integration enables your CrewAI agents to store, retrieve, and manage vector-based knowledge efficiently.
Features
- Vector-based memory for CrewAI — Use Endee as a backend for short-term and entity memory
- High-performance search — Approximate Nearest Neighbor (ANN) searches for fast retrieval
- Metadata & filtering support — Store rich metadata and filter queries
- Embeddings integration — Supports any embedding provider (OpenAI, Google Gemini, Cohere, HuggingFace)
Requirements
- Python 3.8 or higher
- An Endee account (sign up at Endee Dashboard )
- API key for your chosen embedding provider
Installation
Install the Endee CrewAI integration package:
pip install endee-crewaiInstall CrewAI and your preferred embedding provider:
pip install crewai crewai-tools google-genaiEnvironment Variables
Create a .env file to store your API credentials:
ENDEE_API_TOKEN=your_endee_api_token
GOOGLE_API_KEY=your_google_api_key
OPENAI_API_KEY=your_openai_api_key
COHERE_API_KEY=your_cohere_api_keyNote: You can use any embedding provider (OpenAI, Google, Cohere, HuggingFace). Supply the API key for the provider you use and omit the rest. However,
ENDEE_API_TOKENis required to access your Endee vector database.
Initialize Endee Vector Store
Set up the Endee vector store with your preferred embedding provider:
from endee_crewai import EndeeVectorStore
import time
# Embedding function (e.g., using Cohere)
embedder_config = {
"provider": "cohere",
"config": {"model_name": "small", "api_key": "<COHERE_API_KEY>"}
}
# Create Endee store
memory_store = EndeeVectorStore(
type="my_index",
api_token="<ENDEE_API_TOKEN>",
embedder_config=embedder_config,
space_type="cosine",
crew=None,
)
# Reset index if needed
memory_store.reset()
time.sleep(2) # Wait for reset
print("Endee vector store initialized successfully")Embedding Provider Examples
OpenAI:
embedder_config = {
"provider": "openai",
"config": {"model_name": "text-embedding-3-small", "api_key": "<OPENAI_API_KEY>"}
}Google:
embedder_config = {
"provider": "google",
"config": {"model_name": "models/embedding-001", "api_key": "<GOOGLE_API_KEY>"}
}Cohere:
embedder_config = {
"provider": "cohere",
"config": {"model_name": "small", "api_key": "<COHERE_API_KEY>"}
}Next Steps
Now that you have your vector store set up, learn how to: