Skip to Content
IntegrationsCrewAIQuickstart

CrewAI Quickstart

Build AI agent systems with persistent vector memory using Endee and CrewAI. This integration enables your CrewAI agents to store, retrieve, and manage vector-based knowledge efficiently.

Features

  • Vector-based memory for CrewAI — Use Endee as a backend for short-term and entity memory
  • High-performance search — Approximate Nearest Neighbor (ANN) searches for fast retrieval
  • Metadata & filtering support — Store rich metadata and filter queries
  • Embeddings integration — Supports any embedding provider (OpenAI, Google Gemini, Cohere, HuggingFace)

Requirements

  • Python 3.8 or higher
  • An Endee account (sign up at Endee Dashboard )
  • API key for your chosen embedding provider

Installation

Install the Endee CrewAI integration package:

pip install endee-crewai

Install CrewAI and your preferred embedding provider:

pip install crewai crewai-tools google-genai

Environment Variables

Create a .env file to store your API credentials:

ENDEE_API_TOKEN=your_endee_api_token GOOGLE_API_KEY=your_google_api_key OPENAI_API_KEY=your_openai_api_key COHERE_API_KEY=your_cohere_api_key

Note: You can use any embedding provider (OpenAI, Google, Cohere, HuggingFace). Supply the API key for the provider you use and omit the rest. However, ENDEE_API_TOKEN is required to access your Endee vector database.

Initialize Endee Vector Store

Set up the Endee vector store with your preferred embedding provider:

from endee_crewai import EndeeVectorStore import time # Embedding function (e.g., using Cohere) embedder_config = { "provider": "cohere", "config": {"model_name": "small", "api_key": "<COHERE_API_KEY>"} } # Create Endee store memory_store = EndeeVectorStore( type="my_index", api_token="<ENDEE_API_TOKEN>", embedder_config=embedder_config, space_type="cosine", crew=None, ) # Reset index if needed memory_store.reset() time.sleep(2) # Wait for reset print("Endee vector store initialized successfully")

Embedding Provider Examples

OpenAI:

embedder_config = { "provider": "openai", "config": {"model_name": "text-embedding-3-small", "api_key": "<OPENAI_API_KEY>"} }

Google:

embedder_config = { "provider": "google", "config": {"model_name": "models/embedding-001", "api_key": "<GOOGLE_API_KEY>"} }

Cohere:

embedder_config = { "provider": "cohere", "config": {"model_name": "small", "api_key": "<COHERE_API_KEY>"} }

Next Steps

Now that you have your vector store set up, learn how to: